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ABSTRACT ~~~~~ ç~frS’ ~~~~
We consider the vector initial value problem

= f ( y , t,c), y(O) = y0(~) in the situation when the m x m

matrix f (y,t,O) is singular with constant rank k < m and
y

has k stable eigenvalues. We show how to determine the

unique limiting solution Y~ of the reduced proble m
f ( Y0,t,O) = 0 and how to obtain a uniform asymptotic expan—
sion of the solution which is valid for small values of c

on finite t intervals. A numerical technique is developed

to calculate the limiting solution and the results of some

examples are compared with an existing code for stiff dif f—

erential equations .

1. INTRODUCTION

We consider the initial value problem

= f ( y , t,c)  , y ( O ,c) = y 0(c) (1.1)

for m nonlinear differential equations on a finite interval

0 � t � T in the limit as the small positive parameter c
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tends to zero. Familiarity with singular perturbation  
E

problems leads one to expect that (under appropriate stabil— —

ity conditions) the solution of (1.1) would converge to a
~~~~~~~~~~~~ ~P!S

limiting solution Y0 of the reduced system 
-
~

f0
(Y
0,t

) f (Y 0,t,O) = 0 (1.2)

as c -
~ 0, at least away from an initial boundary layer region f I

of nonuniform convergence. For example, in the classical ,
Tilchonov problem (cf. Wasow (1976)), when the Jacobian F~
f~ (Y~t~O) has stable eigenvalues for all y and t (the region
of stability can be further res tricted), then (1.2) has a
unique solution Y0(t) which is the limiting solution of (1.1)

for t > 0. The solution generally converges nonuniformly at

t = 0 since there is no reason to expect that Y0
(0) = y0(0).

Indeed , if f is infinitely differentiable in y and t and has

an asymptotic expans ion in c then the solution y(t,c) of
(1.1) can be represented asymptotically in the form

y(t,c) = Y( t,c) + ll(r ,c), (1.3)

throughout 0 � t � T. The outer solution Y and the boundary

layer correction II both have asymptotic expansions in c, and

fl tends to zero as the stretched (or boundary layer) vari-

able

r = tIc (1.4)

tends to infini ty.
We wish to consider (1.1) when matrix f~ (Y~t~O) is singu-

lar, and in particular satisfies:
Hypothesis (H): f~ (y,t,0) has constant rank k, 0 � k < in

for all t in 0 ~ t � T and all y; its nonzero eigenvat es
have negati ve real parts there; and its null space is
spanned by in — k linearly independent eigenvectors .

In this case we will find that the asymptotic solution of
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(1.1) still has the form (1.3) whenever the reduced system

(1.2) is consistent and solvable, i.e., whenever (1.2) has at

least one solution. However, because f 0 is singular, (1.2)

no longer has a unique solution and additional analysis is

necessary to determine the unique limiting solution for

t > 0. We call such problems “singular singularly—perturbed

problems”. Two simple scalar examples illustrating some of

the possibilities are (i) €~~ = 1, y~O) = 0 and

(ii) €~~~ — O~ y(O) = 0. For (i), the reduced problem 1 = 0

is inconsistent, and while y = = t/c is a solution of the

form (1.3) we see that II becomes unbounded as r -
~~ ~ . For

(ii), the reduced problem 0 0 is satisfied for all Y0, but
- 
.
~~~~

• - only the trivial solution Y0 — 0 is a limit of the unique

solution y = 0.

Campbell and Rose (1978) studied constant coefficient

singular singularly—perturbed problems of the form

= P(c)y (1.5)

and showed that the “semistability” condition of Hypothesis

(H) is a necessary and sufficient condition for a limiting

solution to exist for all t > 0 and all initial vectors y0.
O’Malley (1978) obtained asymptotic solutions of (1.1) in the

almost—linear case when f(y,t,O) F(t)y + g(t), assuming

that the linear reduced system F(t)Y0 + g(t) 0 is consis-

tent. A preliminary study of nonlinear systems was reported

in O’Malley and Flaherty (1976). Additional work on singu-

lar singular—perturbed problems was done by Vasil’eva and

others (cf. Vasil’eva (1976) and the references contained

therein).

Asymptotic solutions with a different structure than (1.3)

might result if initial values were restricted . For example,
consider (1.5) with
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0 —c
F(e) =

—l 0

and suppose that the initial components satisfy y~ 
=

then we have the trivial solution for t > 0, but the boundary

layer behaviour is determined by the stretched variable

a = t/v’~. More complicated limiting solutions would occur if

we allowed “turning points” where the rank of f~ (Y~t~0)

changes at particular y and t values. Studies of these

interesting and difficult problems are contained in the work

of Howes (1978) and Kreiss (1978). The latter also contains

numerical methods. Two simple scalar examples of such prob-

lems are c~- = —y 3 
+ sy and c~ = (t — l/2)y, where the ranks

of f~ (y0,t,0) change at y = 0 and t = 1/2, respectively .

In Section 3 of this paper we develop asymptotic expan-

sions for the outer solutions Y(t,c) of a special class of

singular singularly—perturbed problems and in Section 4 we

consider more general problems. Some preliminary linear

algebra is presented in section 2. Expansions for the boun-

dary layer correction fl(t,c) and a proof of the asymptotic

validity of our solutions have also been obtained and will be

reported in O’Malley and Flaherty (1978). In Section 5 we

develop a numerical procedure for calculating the limiting

solution Y0(t) which is based on the expansion of Section 4

and in Section 6 we apply this procedure to some examples

and discuss the results.

Our primary motivation for this work is the need to dev-

elop numerical procedures for singularly—perturbed (or stiff)

two—point boundary value problems. However, our results

should be applicable to initial value problems in power gen-

eration and distribution systems, biological and chemical

reactions, and electrical networks. A new application is

-— -1
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ill—cond itioned nonlinear optimization problems (cf. Boggs

and Tolle (1977)) .

2. ALGEBRAIC PRELIMINARIES

We shall attempt to find an asymptotic solution of (1.1)

in the form given by (1.3) . The decay of fl as T + ~~ implies

that the outer solution Y(t ,c) should sat isfy

w f(y , t , c) (2.1)

as a power series in C, i.e.,

Y(t ,c) - -E Y.(t)c3. (2.2)
j -0 3

Under Hypothesis (H) we are guaranteed that

f~~(y, -t ,O) .
~~~~

. (y, t ,O) (2.3)

can be put into its reduced echelon form by an orthogonal

matrix E(y,t). Golub (1965) discussed a numerical procedure

for obtaining E by performing a sequence of k Householder

transformations. The differentiability of E follows that of

f0 under the constancy of rank condition (cf. Golub and

Pereyra (1976)). We partition E as

E 1
E = (2.4)

E
2

where E 1 is k x m, E2 is (m-k) xm, and

E 2 ~oy = o (2.5)

In addition,

T ~
Ef

0 
E = (2 .6)

y 0 0

where 

~~~ .-~~~- - ~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~- -  
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S = E
1f~~

E~ , X = E
1f0

E~ , (2.7)

Hypothesis (H) guarantees that S has k stable eigenvalues.

We note that Clasen at al (1978) used such constant ortho-

gonal matrices E to integrate stiff problems, while O’Mall ey

(1978) used time dependent matrices for almost linear prob—

1 ems.

The orthogonality of E further implies that

E 1E~ 0 , E1E
’
~ = ‘k ‘ E 2E 2 1m—k , and (2.8)

T TE 1E 1+ E 2E 2 =

where I is the m x in identity matrix. Using the last rela—

tion we introduce the complementary orthogonal projections

P = 4E1 , Q = E~E~ (2 .9)

which provide a direct sum decomposition of rn—space with Q
projecting onto N(f

0
T), the null space of f

0
T
, and p project-

ing onto R(foy
)~ the range of

3. A SPECIAL PROBLEM: E(y,t) — E(t)

In this section we examine special problems (1.1) when the

orthogonal matrix E(y,t) introduced in Section 2 is indepen-

dent of y. This, of course, includes the nearly linear prob-

lems where

f(y,t,O) = F(t)y + g(t)

and “classical” singular perturbation problems having the

form

C)?
1 

= f1(y1,y2,t) + cg 1(y 1,y 2, t ,c)

= cg2 (y 1,y 2, t ,c) .

Here, y
1 
is a k—vector , y2 is an (m—k)—vector, and ~f1/~y1 is
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of rank k. In this case E —

We define

z — E( t)y ,  (3.1)

and further partition z like E, i.e.,

z E
1y 

-

1 
a (3.2)

z2 
E2y

Introducing (3.2) into (1.1) gives the following system for

z:

£1 1 — h
1
(z

1,
z
2
,t,c) , z1

(O) — E
1
(0)y0 (3.3a)

a2 — h2(z1,z2,t,c)/c , z~(0) — E2(O)y
0 (3.3b)

where,

— E . f ( E Tz ,t ,c) + cE~E
T
z a 1,2. (3.4)

We have divided (3.3b) through by t since

h 2 (z 1, z 2, t ,0) = 0 (3.5)

necessarily follows if the reduced system (1.2) for (1.1) is

consistent. This is because

3h
~~~~~~~~ (z1,z~,t,O) = E2f0 (E

T
z,t)E~ = 0 , 

a 1,2

upon use of (3.4) and (2.5). Thus, h2(z1,z2,t,O) is a func-

tion of t only. However, the reduced system (1.2) implies

the corresponding reduced system

h
~
(z

1,
z
2,

t,O) — 0 , i = 1,2

for (3.3). Hence h2(z1,z2,t,0) must be the trivial function

of t on 0 � t � T for any z1 and z2, otherwise (1.2) would

have no solutions. Tikhonov’s results apply to (3.3) because

- I his stability condition that



= E1f0~(E
T
z,t)E~ S (3.6)

have stable ei genvalues holds for all z 1, z 2 and for all t on

O � t ~ T. Thus , (3.3) has an asymptotic solution of the

form

z 1(t , c) = Z 1(t , c) + A 1(r ,c)
(3.7)

Z 2 (t , c) = Z2(t,c) + cA2(t,c)

(cf .  O’Malley ( 1974)), where the outer solution (Z 1, Z 2) and

the boundary layer correction (A 1,A2) each have power series

expansions in c with the boundary layer correction decaying

to zero as t — t/C +

Since the outer solution provides the asymptotic solution

for t > 0, we must have

cZ 1 
= h1(Z1,Z2,t,c) , Z2 = h2(Z1,Z2,t,c)/c (3.8)

satisfied as power series

Z
~
(t,c) - E Z..(t)C3 , i = 1,2, (3.9)

j=0 J

in C . The leading term must necessarily satisfy the limiting

problem

h1(Z10,Z20,t,0) = 0 (3.lOa)

— h2 (Z10,Z20,t,O) , Z~0(0) = E2(O)y
0(0). (3.lOb)

Its unique solution is obtained since (3.6) and the implicit

function theorem imply that the algebraic equation

h1(Z10,Z20,t,0) = 0 can be uniquely solved for the k—vector

Z
10(t) — 4’(Z

20
(t), t ) (3.11)

leaving the nonlinear (sr-k) th order initial value problem
ah

— .-~~~~~~
. (~(Z20,t), Z201 t,0) , Z20(0) — E2(O)y0(0) (3.12)

—

~

-

~

— - —— - ~~~~~~~~~~~~~~ — - -  -—~~~~~~~~~~~--~~~~ -~~~~~- — —  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



for Z20 . We shall assume that the unique solution to (3.12)

continues to exist throughout 0 � t � T. Note that the re-

duced system (1.2) implied that both h1 
= 0 and h

2 
= 0 along

(Z
10 ,

Z
20,t,

0), but it did not provide equation (3.12) needed

to uniquely determine the limiting outer solution (Z10 ,
Z
20
).

Higher order terms in (3.9) satisfy linear problems

~~~ (Z10~Z20~t~O)Z1~ 
+ ~~~~~ (Z10~

Z
20~

t~0)Z2~ 
= g1,~ _ 1 (t)

~
2h a2h 

(3.13)

= 

~z
1

3
2
c (Z10~Z20~ t~O)Z1~ 

+ 

a z a
2
c (Z10~

Z
20~

t~O)Z2~ 
+

g2,~_f
t), z

2
.(O) = _A

2,~_1(O)

with the ~~ ~_ 1(t) ’s determined by lower order terms in the

outer expansion. One solves the first equation for Z~~ as a

linear function of Z2~, and then the resulting linear differ—

ential equation for Z2~ . Thus, the outer expans ion (3.9) can

be uniquely generated termwise in 0 � t ~ T up to a knowledge

of the initial value of the boundary layer correction compo-

nent A2(0,c).

The boundary layer correction is obtained by noting that

both (z1,z2) and (Z1,Z2) satisfy the differential equations

(3.3). Hence, using (3.8) in (3.3) we have

dA
= h1(Z1(cr ,c) 

+ A 1(t,~),Z2(cr ,c) 
+ CA

2
(T ,C) ,CT ,C)

—h 1(Z 1(cr , c), Z (eT ,c),CT ,C) (3.14)
dA 2

= (h2
(Z1(CT ,c) 

+ A 1(r,c),Z2(cr ,c) 
+ CA

2
(T ,C),CT ,C)

We require A 1 and A
2 

to decay as t + and sat isfy the ini-

tial condition

A 1(O ,c) = E 1(O)y 0 (O) — Z 1(O ,c) .  (3.15)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Taking

A . ( r ,c)  
~~~~~~~~~ 

A..(r)c3 i = 1,2 (3.16)

we find that the leading term A 10 must satisfy the nonlinear

initial value problem

dA

di 
= h

1
(Z

10
( O)  + A

10
( r ) , Z

20
(0) , O,O)

h
1

(Z
10

(O) ,Z10 (0) , 0,O) , (3.17)

A
10

(0)  = E
1

(0) y 0(O) — Z ( 0)

This problem has a unique exponentially decaying solution

A (T) since (3.6) implies tha t ~j— (z  ,z ,t,O) has s table
10 Z

1 
1 2

eigenvalues for all arguments. Knowing A
10 

we can calculate

A
20 

and successive terms in (3.14). The details of this cal-

cula tion are omitted here as they will be repor ted elsewhere
(cf . O’Malley and Flaherty (1978)).

The asymptotic validity of the expansion (3.9) follows

f r om Tikhonov’s theorem (cf. Wasow (1976) or Vaèil’eva and
Butuzov (1973)). Returning to the original variables , we

have found a unique asymptotic solution of the form (1.3)

with the outer solution given by

Y(t , s) = ET (t )Z 1(t , c) + E~ (t )Z 2 (t ,c)

and with the exponentially decaying boundary layer correction

given by

fl(-r,c)  = E~ (c T)A 1(r , c) + CE T (c t)A (r ,c) .

The result will even be valid for all t � 0 pr ovided tha t Z
20

decay s exponentially as t + (cf. Hoppensteadt (1966)).

4. THE ORIGINAL PROBLEM

We now return to the original problem where the orthogonal

matrix E can depend on y as well as t. As noted in Section

2 , the outer solution (2.2 )  should sat isfy the system (2.1)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
-- ~~~~
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as a power series in c for t � 0. The leading term in the

expansion will satisfy (1.2) and, f o r  j � 1, f~~(Y 0~
t~ 0) Y .

will be successively c~- ’ ermined by the p recedi ng Y~ ,
£ 0,1,..., j-l . This fails to uniquely determine the Y . ’s

since f y (Y 0~ t~ O) has rank k < in. We shall instead f ind them

as solutions of different ial  equations . To this end , we

differentiate (2.1) with respect to t to obtain.

f ( Y ,t,c) ~ + ft(Y,t,c) = ci~ (4.1)

and use (1.2) and (4.1) together.

We define E
10

(t )  = E 1
(Y

0 (t) , t) and let E
20

(t) ,P 0 (t ) ,  and

Q0
( t)  be analogously defined . From (2.8) and (2.9 )  we see

that P0 + Q0 = I ;  thus , we can write

= P0Y + Q0Y (4 .2)

and seek to obtain equations for P 0Y and Q 0Y . In particular ,

(4.1) and (4.2)  imply

E 10
f ( Y ,t ,c) (P 0Y + Q0Y) E

10
(—f

~ 
+ cY) .

Us ing the stable matrix

= E 1o f y (Y 0~ t~0)E~ o (4.3)

and (2 .9)  we have

P 0Y = —A0
{ [ f  (Y,t,c) — f~~(Y 0~ t~o) ]P ø’~ (4. 4)

+ f~ (Y~ t~ c)Q 0 Y + f
~~

(Y,t,C) — c~ }

where ,

A 0 = E
10
T
S;

lE10• (4.5)

From (2.1) we have

Q0Y = Q
0

f( Y , t , c)/ c .  (4 .6 )

Using (4.3) and (4.6) in (4 .2)  we f ind



r ~~~~ 
-

t = — A0
{[f (Y , t , c) — f~(Y0~t~o)] t + f. (Y ,t,c)

— c~ } + B 0Q0 f(Y , t ,c)/c

where

B 0 
= ‘m 

— A
0
f
0~
. (4.8)

It may be useful to note that B0 is a projection with

B
0
P
0 

= 0, B0Q0 
= B

0
, and B

0
A
0 

= 0.

Setting c = 0 in (4.7) yields the limiting nonlinear equa-

tion

t 0 = — A o f
~~

(Yo,t ,0) + B0Q0f~
(Y o,t,0) (4.9)

We note that the term Q0f 0~~(Y 0~ t)Y 1 is missing since Qo~oy
=0

upon use of (2.5) and (2 .9) .

In order to obtain further coefficients it is necessary

to consider the coefficients of higher powers of c in (4 .7) .

Thus , setting

f ( Y,t,c) - Z f . ( Y,t)c3 (4.10)
j=0 J

and us ing the expansion (2 .2 )  for Y implies that

f ( Y,t,c)  = f
0

(Y
0,
t) + c[f

1
(Y

0
,t) + f

0~
(Y

0~
t)Y

1
)

+ c2 [ f
2

(Y
0,
t) + f

0~
(Y

0~
t)Y

2 
+ f 1

(Y
0 , t )Y

1
+ ~~ 

(f
0~~

(Y
0,
t)Y

1
) Y

1
] + 0(c 3)

toge ther with corresp onding expans ions f o r  f
~

(Y ,t,c)  and
f~~(Y~ t~ c) .  The coefficient of c in (4.7) then provides the

following nonlinear equation for

t~= 
~~~0 1~~

(Y 0 , t) + f 0 (Y
0 , t )Y 1 + [ f

1
(Y

0,
t)

+ f (Y , t)Y ][P Y + Q f  (Y ,t)] — Y I
OYY 0 1 0 0  0 1 0  0

+ B 0Q 0 
{ f
2

(Y
0,
t) + f 1~~(Y 0~ t)Y 1 

+ ~ [f0~~
(Y

0~
t)Y

1
) Y

1
} 

I1_~~ ~~~~~~~~



Except for  the f inal  quadratic term, this is a nonhomogeneous

l inearizat ion of the equation for Y
0
. Higher order terms

j�2 , satisfy linear differential equations with success-

ively known nonhomogeneous terms .

We note that it may be advantageous to obtain differential

equations for the successive terms Y~ of the outer expansion

even in the special case (see section 3) where E(y , t) is

independent of y. In that case, we solved the nonlinear

al gebraic equation (3.lOa) for Z10 as a function of 
Z20,

followed by a nonlinear initial value problem (3.lOb ) for

Z
20

. It may often be numerically simpler to solve the ini-

tial value problem (4 .9) for Y 0 (t)  and those for later terms

successively . We have not , however , fully explored both

possibilities.

We will have to assume, of course, that the nonlinear

initial value problems, (4.9) and (4.11), for and have

solutions on 0 � t ~ T. Moreover, since (1.2) and its time

derivative (4.1) are built into (4.7 ) , consistency with ( 1.2)

at t = 0 implies consistency of the outer expansion for

t > 0. If consistency failed, the form (1.3) of the solution

would be inappropriate. Thus, using (1.2), (2.1), (2.2), and

(4.10), we must have

f
0
(Y

0
(O),O) = 0 ,

f 0~~(Y 0 (0)~ O)Y 1(O) = 
~~

(0) — f 1(Y 0 (0) , O) , (4.12).

These equations always have a solution under our assumptions .

For example, in the second equation we must have

— f1(Y0(0),O) in the range of f0~ (Y0(O)~O). Recall ,

however , that 
~m = + Q 0 provides a direct sum decomposi-

tion of m space with 

-- - - -



R(Q0) = N(f0
T(Y 0(O) ,O)) and R(P0) — R(f 0~(Y0(O)~O)).

Thus, the second of (4.12) will be automatically satisfied

since Q 0f 0~ = 0 implies that Q
0
[’~0
(0) — f

1
(Y
0
(O),0)] — 0.

Because f
0 

has rank k, k components of Y0(0) are deter-

mined as a function of the remaining rn—k components.

Indeed, we could attempt to solve (1.2) for E
10
(O)Y

0
(O) in

terms of E
20
(O)Y

0
(O) since S0(O) (cf. (4.3)) is nonsingular.

Likewise, for 3 > 0 , termwise determination of

f ( Y (0) ,0)Y .(O)  implies that of E
1

(O)Y .(0)  (b y an argument

similar to the one preceding (4.3)). Thus, E10
(O)Y~(O)~ or

is determined terniwise while E
20
(0)Y

3
(O), ~‘r

- 
- Q0

(O)Y
3
(O), may be specified. The purpose of the boundary

- -

. layer correction is to compensate for the j ump in

P0(O)(Y~(O) — y
~) and to specify the values of Q0

(O)Y
3
(0),

j � 0.

Once again, the representation (1.3) and the fact that the

differential equation (1.1) is satisfied by both y and Y

imply that the boundary layer correction fl(T,c) must satisfy

the nonlinear equation

— f(Y(ct,e) + I1(r ,c), cr , c) — f(Y(c-r,c),c r ,c) (4.13)

as a power series

fl(T,c) - Z fl.(t)c3 (4.14)

in c and decay to zero as t ~~~. Moreover,

fl (O ,c) — y 0 (c) — Y(O,c). (4.15)

The details of the calculation of the boundary layer cor-

rection and a proof of the asymptotic validity of the solu—

tion are omitted here and will be presented in O’Malley and

Flaherty (1978). We summarize our f indings , however , in the

following theorem. 
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Theorem: Consider the initial value problem

= f(y,t,c) , y(0) = y0(c)

for an in—vector y as c -‘~ 0
+
. Assume that:

(i) f is infinitely differentiable in y and t and f and

y0(c) have asymptotic series expansions in powers of c.

(ii) There exists an infinitely differentiable orthogonal

matrix E(y,t) for all y and for t in the interval

0 � t � T such that E(y , t )f  (y, t ,O) is row—reduced and

of rank k, 0 � k < in. Moreover , partitioning E after

its f i rs t  k rows as in (2.4) , we have
-

- S X
Ef (y, t ,O)E T 

=y 0 0

where S = E
1
f (y,t,O)E~ is a stable matrix for all

values of y and t .

(i i i)  The nonlinear system

f(Y
0
(0),O,0) = 0 (4.16a)

Q(Y (O) ,0) [y 0 (0)—Y (0)
(4.16b)

+ J f(Y0(O) + U (t),O,O)d-r] 0

can be uniquely solved for Y
0
(O). Here, 11

0
(r) is the

decaying solution of

dli
= f(Y 0(0) + 11

0
(r),O,O) — f(Y 0

(0) ,O ,O) ,

1l
~
(0) = y0(O) Y

0
(O).

(iv ) The matrix

I — C0E10(0)B0(Y0(0),O)

is invertible for a particular matrix C0. (This

insures that Y 1(0) may be uniquely determined.)

(v) The init ial  value problems (4.9 )  and (4.l1 ’
~ have

—I
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solutions on the interval 0 � t � T.

Then, the initial value problem (1.1) has a unique solution

of the form

y (t , c) = Y(t ,c) + lI(t ,c) .

Some comments on this theorem are listed below.

(i) Hypothesis (ii) is guaranteed by out earlier Hypo—

thesis (H) .

(ii) The theorem is easily obtained f r om Tikhonov ’s res ul t
if E(y, t) is independent of y. It is cons iderably

simplified if  only E
2

(Y (0) , O), and thereby Q(Y
0

( O) ,O) ,
is independent of Y 0 (0) . In this case (4.16b) reduces

•
~ - : to the linear equation

Q0 (O) [y °(0) — Y 0 (O) ] = 0 - 
(4.17)

and (4.16a) becomes a nonlinear equation for

P
0

(0) Y
0(O). It can be further shown that the inverti—

bili ty condition of Hypothesis (iv) then will  be auto-

matically satisfied .

(iii) Higher order terms follow without comp lica tion under
these hypotheses.

(iv) Vasil’eva (1976) considers such problems under a list

of ten hypotheses , generally paralleling, but more
restrictive than ours . Her most critical assumption

involves the existence of a k—dimensional manifold of

decaying solutions for 11 (T) which can , more or less ,
be stated in the form

E20(O)110(t) 
= ~(E 10 (O)110( r ) )

for a particular function ‘~ and for all t and Y (O) .

At T = 0, we would have
V 

E 20
(O) [y 0 (0) — Y 0 (0) ) = •(E 10 ( O) [y 0(0) — Y 0 (O)] )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _  I



where Y0 (0) must also sa t i s fy  the reduced equation at

T = 0. This analog of Hypothesis (iii) should

uniquely determine Y ( 0)  so that the resulting II
~

(O)
lies on the manifold of initial values corresponding

to decaying solutions of 110
(t) .

5. NUMERICAL ALGORITHM

We have developed an algorithm based on the asymptotic

analysis of Section 4 to calculate the leading term 10
(t) in

the outer solution. For most problems it is possible to

calculate numerical solutions without explicitly identifying

a small parameter c; thus, we consider ini tial value pr oblems
- 

•1 in the form

f (y , t ,c)/ c  , y~O) y (c) .  ~5.1)

The c , although shown in (5.1), is to be regarded as uniden-

tifiable. However, if the actual limiting solution is

desired , the evalua tion of  
~‘ in (5.1) causes overflow, or

the order c terms in f are close to the unit roundoff of the

computer relative -to the order unity terms in f, then a value

of c can be identified and the initial value problem can be

written in the f orm of equation (1.1). The actual computer

code is capable of handling both cas es , and all that the user

need do is define ~ as in (5.1) or f as in (1.1).

The algorithm consists of two parts : (i) calculating the

initial conditions Y0
(O) f o r  the outer probl em and ( i i)

integrating the differential equation (cf., (4.9)) for Y0(t).

We first describe the integration procedure .

The differential  equation (4.9) for is not stiff;

hence , any good code for integrating non—stiff initial value

problems may be us ed . We use both the Adams ’ methods that

are incorporated into the Hindmarsh (1974) version of Gear ’s

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



code and the INSt version of the Bulirsch and Stoer (1966)

extrapolation procedure. Both of these codes require the

evaluation of as a function of and t, and we accom-

plish this as follows:

(1) Calculate E (Y0,t) by decomposing f~ (Y
0~ t~ c) .  It is not

necessary to set c to 0 unless c haà been explicitly

recognized and the actual limiting solution is desired.

Golub ’s (1965) p rocedure , which uses a sequence of k
Householder transf orma tions with column pivoting, is

used to obtain E. At the v th step, 1 < v < k, of  this
procedure we have

E
(V)(Y

0~t)~ y
(Y 0i t~C) = [ : ~ ] K~

where , U is v x v and upper triangular, V is

v x (in-v), and K is a permutation matrix due to the

column pivoting. The procedure terminates, and the

rank k of  is de termined , when the maximum available
pivo t element in W is small relative to the diagonal
elements of U. We then have E — E (k) . The decomposi-

tion is not performed at every time step, but, rather

a test is used to determine if  E has changed by too
much. Thus, the same matrix E may be used f o r  several
time steps or , when E is constant, f o r  the entire
integration. If at any stage of the computation the

rank k of changes , a turning point has probably
been encountered , and the integration is terminated.

(ii) Partition E into E 1 and E 2 as in (2.4) . Calculate

Q E~E2 and S — E 1f ( Y 0, t ,c)E~ .

(iii) :Calculate Q~0 — Q~ (Y 0, t ,c) and b — -E
1

[ f
~

(Yo, t,c)
+ ~~~~~~~~~~ When c is explicitly recognized

QY 0 is calculated as Qf~
(?

0,
t,O).

—- - ~~~~~~~~~~~~ V~~~~~~~ V V~~~~ V V ~ ~~~V -- -- ~~S SVV - -——-- - - -
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(iv) Solve S ( E
1i0) — b for E 1Y 0 b y Gaussian elimination and

calculate

= E~ (E ~Y~). 
-

(v)  Calcula te — P~ + QY.

We now turn to the calculation of the initial conditions

Y
0

(O) for the outer problem . This is a difficult  task when

E2 depends on y. It requires the solution of the nonlinear

system (4.16) and the computation of the boundary layer solu-

tion 11
0

( r ) ,  which itself  depends on Y0 (0) . It is possible
that the integral in (4.16b) may be adequately approximated

by a very crude quadr ature rule , which would grea tly s implif y

- - the computation. Miranker (1973) has successfully used such

a technique on stif f  problems , but we have not as yet

explored this possibility. Our code has only been implemen-

ted for problems where E
2 
is independent of y; thus, when c

is not explicitly recognized Y0(O) is determined as the solu-

tion of -

I(Y0
(O) ,0,c)  0

(5.2)
E 2 (Y

0
(O) — y0(c)] — 0.

A Newton like itera tion scheme, which closely parallels the
computation of  Y0(t) is used to solve this nonlinear system.
The procedure is outlined below.

(i) Select an initial guess f o r  Y0 (0) , e.g., a y°

and set ~i = 0.
(i i)  Calc ulate ~~~ by decomposing fy

(X ~~~~O~C)~ This is

performed as in step (1) of the procedure for

calculating Y0. If E1 is independen t of  y then this
step need only be performed once.

(iii) Calculate ~~~ and S~~~ as in step iii~ of the previ-

ous procedure.

- — 
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(iv) Calculate q~~~~~~~~Q (y O~~~~))  and

~~~ — -E~ [ f ( X ~~
’
~,O,c)  +

(v)  Solve S ~~~ 
) (x~~

4 1) _ X~ ’~)] = b~ ’~ for E~~~ (X~~~
’
~-

-x~~ ) and calculate p(~~~) — ~~~~~~~~~~~~~~~~~~

-x~~~)]

(vi) Set x~~
+1) 

= x (1
~ + ~~~~~i 4 l )  

+ q
(~I+ 1)~

If - X
t
~

1) 
is less than some prescribed tol-

erance set Y
0
(O) = x~~

41)
, otherwise increment ~.i by 1

and repeat steps (ii) through (vi). -

Of course , if  the problem is almost linear then only one
iteration need be performed.

The entire procedure was successfully applied to several

examples , some of which are discussed in the next section.

6. NUMERICAL EXAMPLES AND DISCUSSIONS OF RE SULTS

In this section we present and discuss the results of
three examples comparing our method of Section 5 with Hind-

marsh’s (1974)  version of Gear ’s code for stiff differential
equations. Both the Adams ’ methods that we use to integrate

the reduced differential equation and Gear’s stif f ly  stable

methods are contained in this code, and the user se ts a
parameter to select the appropriate method. Hindmarsh’s

code and the IMSL Bulirsch and S toer cod e also req uire the
user to select an estimate f o r  the rela tive local
discretization error and an initial step size for the integ—

ration . In all cases we selected the relative error toler-

ance as 10 6 This is perhaps a bit too severe for our 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  V V
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methods, because if the problem is not very stiff the reduced

solution will be calculated with more accuracy than neces-

sary. The initial step size was selected as lO~~ for Adams ’

methods, l/ lO c  f o r  Gear ’s methods, and 1 for Bulirsch and

Stoer’s method. We found that the IMSL code was extremely

sensitive to the choice of the initial step size and the

times for the integration varied quite dramatically depending

on this choice. Our choice of unity seemed near optimal for

the problems that we considered.

In the tables that follow five numerical solutions are

compared. The solutions labeled “asymptotic” were calculated

-
. by our method without explicitly recognizing C and using

either the Hindmarsh (Adams) or the IMSL codes; those labeled

“Gear ” were solved by Hindmarsh ’s (Gear) code ; and those

labeled “red uced ” were calculated by our method with c expli-
citly set to zero. Additional headings in the tables are as

f ollows:
e is the maximum difference in any component, times 10

6
,

between a numerical solution and the exact solution at

terminal time T. For our asymptotic or limiting solu-

tions

e max I Y 0~ (T) - y1(T)) 
X 10

6
.

1�i�m

In genera.l, for the examples considered, the error was
fairly constant outside of the initial boundary layer.

d when the exac t solution is not known, we have tabula ted
the maximum difference in any component, times 10

6
,

be tween solutions obtained by our method and those by
Gear’s code at terminal time T.

MFE For our asymptotic or limiting solutions this denotes

the number of times tha t Y0 was evaluated during the
course of the integration. For Gear ’s solutions it

- . -  — - - — -- ~~V ______ V - - - 
_ V__ _ 

~~~~~~ V
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denotes the number of times that was evaluated.

NJE For Gear’s solutions this denotes the number of times

that f~ was evaluated during the course of the integ-

ration. Our methods evaluate f each time Y is eval-
y 0

uated.

CP Time in milli-seconds to integrate the problem, exclu-

ding input/output and supervisor state time. Except

where noted it Includes the time necessary to calculate

the initial conditions Y0(O) by our method. In most

cases the times are averaged over several runs. All

calculations were performed on an IBM 360/67 at the

V Rensselaer Polytechnic Institute.

CP CP time relative to the fastest execution time.rel
The individual examples are discussed below.

Example 1:
ru/c-i) 2(l/C-l)1 r 1 1
1 I y, y(O) 

~ ~~~
, O � t � T  = 1.

L—u/c—1) — (2/c—l)J L 1 J
This constant coefficient example is an adaptation of one

considered by Gear (1971). The exact solution is

— t — t/c

y(t) - I -2e~~ +3e_ t/c }
The results are compared in Table 1 for c — lO t

, i’.2,4,6,8.

They are typical of the results of subsequent examples in

that they show that the accuracy of our method increases as

the stiffness increases without an increase in computational

effort. On the average, our asymptotic and reduced solutions

required 5 milli-seconds to calculate the initial conditions

for the outer problem. 

-- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



TABLE I

S~&wna.ry of Results for  Example 1

METHOD 10 2 io~
6 

10
8

Asymptotic e 1110 0. 111 . 
- 

1.81 .0130
(Adams)

NFE 34 34 34 34
CP 135 137 138 129

CP 1 1.57 1 .60 1.62 1.51

Asymptotic e 11100. 110. 1.10 .00171
(mist)

NF E 33 33 33 33
CP 89.1 89.8 91.0 89.8

CP 1 1 .04 1.05 1.05 1.05

Reduced e .126 .701 .701 .701
(Adams)

NF E 34
CP 135

C?rel 1.58

Reduced e .000309 .000309 .000309 .000309
( IMSL)

NPE 33
CP 85.5

CP 1 1.00

Gear e 3.51 7.61 8.85 4.40

NFE 158 183 188 195
NJE 17 24 25 27
CP 332 396 407 422

CP 1 3.89 4.63 4.75 4.94

_____ 11IV.~~~~~
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TABLE II

Suwiary of Resul ts for Example 2

METHOD 10
2 1o~ io 6 10

8

Asymptotic e 300. 1.98 .640 .666
(Adams)

NFE 46 46 46 46
CP 196 192 188 196

CP
1 1.36 1.33 1.31 1.37

Asymptotic e 301 . 2.6S .0284 .00223
(IMSL)

NFE 49 49 49 49
CP 154 150 152 148

- 

CP 1 1.07 1 .05 1.06 1.03

Reduced e 214. 2.81 .688 .667
(Adams)

NFE 46
CP 187

CPrel 1.30

Reduced e 214. 2.14 .0201 .001 75
(fl~fsL)

NFE 49
C? 144

cP
rel 1.00

Gear e .541 1.26 3.93 3.97

NPE 167 191 196 203
NJE 20 25 26 28
C? 341 399 406 421

C? 1 2 .38 2.78 2.83 2.93

—  ~~~~~~~~V - 
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TABLE III

Suninary of  Results for  Examp le 3

C

-2 -‘. -6 -8
METHOD 10 10 10 10

Asymptotic d 317. 3.39 .35 2 .358
(Adams)

NFE 30 30 30 30
CP 170 170 1 70 1 72

CP
1 1.66 1.66 1 .66 1.68

Asymptotic d 317. 3.56 .440 .446
(INSL)

NFE 21 21 21 21
CP 108 107 107 107

- a :  - CP 1 1.05 1.05 1.05 1.05

Reduced d 1217. 12.0 .269 .358
(Adams)

NFE 30
C? 165

CPtel 1.61

Reduced d 1217 12.1 .411 .445
(IMSL)

NFE 21

CP 102
C?rel 1.00

Gear NFE 143 144 150 158
NJE 17 19 21 23
C? 343 365 380 400

CP 1 ~~~~ 3.57 3.72 3.91

- -— V ~~~~~ - V V - ~~~~~ . - 
V• ________
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TABLE I V

Time to integrate from t=O to t = T = 1OC for Example 3

C Asymptotic Gear
(Adams)

NP E CF NF E NJE CP d C?ratio

i~
_2 

12 82.9 119 14 316 451. 3.81

10 5 52.1 121 15 341 4.81 6.54
_ 6

10 2 37.1 121 15 342 .0361 9.22

10 2 37.4 121 15 341 .0231 9.12

TABLE V
- a  

Time to integrate f r om t=O to t = T = 1 for  Example 3
using initial conditions for the outer probte’n (results

for c 0 are the redze.,ed solution)

Asymptotic ! Asymptotic! Gear
Reduced Reduced
(Adams) ( INSL)

V 
C ~~~ cp C?

rei NFE CP 
CP rei NF E NJE cp CP

rei

10 2 30 142 1.87 21 79 1.04 54 6 103 1.36

10 30 141 1.87 21 79 1.04 56 5 102 1.35

10 30 141 1.87 21 79 1.04 43 8 100 1.32
~8

10 30 143 1.89 21 78 1.04 51 10 118 1.55

0 30 138 1. 83 21 76 1.00

Example 2:

. 
~ 1~~

T
2
)I]. - ~ (y 1+y2 )

2
) - -

~~~~
- (y~ -y~ ) -2

1 2 2 2 ‘
C (y 1+y 2) [l  - ~(y1+y2) 

] + —s- (y 2 -y 1) 0

0 � t � T —  2
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This nonlinear problem was contrived so that the orthogonal

matrix E is constant and the exact solution is known as

y1(t) 
= — ~~~ y2(~~ = (

~ +
with

= — (1 — ~e
2thlE5_1

~
/2 

r~ = /2 e
t ( l—l /~ —c

The results are pres ented in Table 2 and generally parallel

those for Example 1. The average time required to calculate

the initial conditions for the asymptotic and reduced solu-

tions was 24 milli—seconds

Examp le 3:

V V 

1

- a  - 

- = f ( y , c) ~ 2(y 1y 3-y~ )+cy ,y(O) = 0 , O~t�T = 1

(y ~—y 1y3
) 1

This example arises in chemical reactions and was studied by

Vasil’eva (1976). She did not specify the Ey 1 terms in f

nor the initial conditions and they were selected by us

rather arbitrarily. The Jacobian ~~(y,O) of this system has

rank 1 for all y ~ 0 and it may be row-reduced by a constant

orthogonal matrix E. The results of this example are pre-

sented in Table 3. The average time required to calculate

the initial conditions for the asymptotic and reduced solu-

tions was 28 milli-seconds.

Our method is to be used on problems where the boundary

layer solution is not of interest; hence, we should be able

to calculate the initial conditions for the outer problem

faster than a stiff differential equation solver could in- -j
tegrate through the boundary layer. In order to provide

some evidence that this is the case we solved Example 3 in
the interval 0 � t � lOc (the approximate boundary layer

- 
~~~~~~~~~~~~



-

. 

— ---

~

- 
—--

~~~~~~~~~~

region) using Gear’s methods and our asymptotic method with

the Adams ’ integrators. The results are presented in Table

4 for ~ = lO t , i = 2,4,6,8. The C? times for our method

includes both the times to calculate the initial conditions

and to integrate the outer problem from t = 0 to 1Cc. To

make the comparison somewhat more fair we - re-evaluated E

after each iteration, even though it is constant for this

example. For c � 1.0 6 we see that our method can calculate

the solution at the edge of the boundary layer region

approximately 9 times f a s ter than Gear ’s methods.

A comparison of the results in Tables 3 and 4 shows that

about 90% of the time required to integrate Example 3 from

= 0 to 1 by Gear’s code is devoted to the boundary layer

region f o r  c � 10 k
. This suggests the possibility, of using

our method to calculate the initial conditions for the outer

problem and then using a stiff method to integrate the ori-

ginal differential equation. This test was performed on

Example 3, and the results are reported in Table 5. All

methods use the same initial conditions, i.e., those gener-

ated by -our method. The CF times required to calculate

these conditions are not included in Table 5. The differ-

ence between any two computed solutions is less than

3 x 10 While the results are far from conclusive, they

do show the extra computational effort that is required by

Gear ’s method for very stiff problems.
The state of the art of numerical methods for stiff

initial val ue problems f o r  ord inary dif f e r e n tial equations
is very well developed (cf. Enr ight et al ( 1 9 7 5 ) )  and a
variety of good techniques exist. Nevertheless, there are

many problems , par ticularly in chemical reac tions , where
asymptotic methods should be useful . They may be used to

calculate accurate solutions of  very stif f  proble ms, to

-- - V V V_ __ ~~~~~ - - -.~~~~~ -~- -~ . -~~
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furnish initial conditions for standard stiff integration

routines, and/or as an analytical tool to provide qualitative

information about the solutions of stiff problems. In future

papers we hope to extend our calculations to initial value

problems where E depends on y and to consider boundary value

problems. -
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